Computing arithmetic Kleinian groups
نویسندگان
چکیده
منابع مشابه
Computing arithmetic Kleinian groups
Arithmetic Kleinian groups are arithmetic lattices in PSL2(C). We present an algorithm that, given such a group Γ, returns a fundamental domain and a finite presentation for Γ with a computable isomorphism.
متن کاملFiniteness of arithmetic Kleinian reflection groups
We prove that there are only finitely many arithmetic Kleinian maximal reflection groups. Mathematics Subject Classification (2000). Primary 30F40; Secondary 57M.
متن کاملComputing with Arithmetic Groups
1 PAIRS OF DUAL CONES Around 1900 Voronoï [10] formulated his fundamental algorithm to enumerate all similarity classes of perfect lattices in a given dimension. This algorithm has far reaching generalisations ([7], [6], [4]) used to compute generators and relators for arithmetic groups. A quite general situation, where one may apply Voronoï’s algorithm, is described in [7]: Let σ : V1 ×V2 → R ...
متن کاملQuaternion Algebras, Arithmetic Kleinian Groups and Z-lattices
Let K be a quadratic extension of Q, B a quaternion algebra over Q and A = B ⊗Q K. Let O be a maximal order in A extending an order in B. The projective norm one group PO1 is shown to be isomorphic to the spinorial kernel group O′(L), for an explicitly determined quadratic Z-lattice L of rank four, in several general situations. In other cases, only the local structures of O and L are given at ...
متن کاملOn fields of definition of arithmetic Kleinian reflection groups
We show that degrees of the real fields of definition of arithmetic Kleinian reflection groups are bounded by 35.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2015
ISSN: 0025-5718,1088-6842
DOI: 10.1090/s0025-5718-2015-02939-1